If $\vec{A}, \vec{B}, \vec{C}$ are non-coplanar vectors then $\frac{\vec{A} . \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} . \vec{B}}+\frac{\vec{B} . \vec{A} \times \vec{C}}{\vec{C} . \vec{A} \times \vec{B}}$ is equal to |
3 0 1 none of there |
0 |
$\frac{[\vec{A} \vec{B} \vec{C}]}{[\vec{C} \vec{A} \vec{B}]}+\frac{[\vec{B} \vec{A} \vec{C}]}{[\vec{C} \vec{A} \vec{B}]}$ $\frac{[\vec{A} \vec{B} \vec{C}]}{[\vec{A} \vec{B} \vec{C}]}+\frac{[\vec{B} \vec{A} \vec{C}]}{[\vec{B} \vec{C} \vec{A}]}$ (Cyclic property) $= 1 – 1$ $= 0$ |