Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

$\int\frac{\sin^2x}{\cos^6x}dx$ is a:

Options:

Polynomial of degree 5 in sin x

Polynomial of degree 4 in tan x

Polynomial of degree 5 in tan x

Polynomial of degree 5 in cos x

Correct Answer:

Polynomial of degree 5 in tan x

Explanation:

$I=\int\frac{\sin^2x}{\cos^6x}dx=\int\tan^2x\sec^2x.\sec^2x\,dx=\int\tan^2x(1+\tan^2x).\sec^2 x\,dx$

Put tan x = t to get: $I=\int t^2(t^2+1)dt=\frac{t^5}{5}+\frac{t^3}{3}+C=\frac{\tan^5x}{5}+\frac{\tan^3x}{3}+C$