Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

The point on the curve $y^2=x$, where the tangent line makes an angle of $\frac{\pi}{4}$ with x axis is

Options:

(4, 2)

$\left(\frac{1}{2}, \frac{1}{4}\right)$

$\left(\frac{1}{4}, \frac{1}{2}\right)$

(1, 1)

Correct Answer:

$\left(\frac{1}{4}, \frac{1}{2}\right)$

Explanation:

The correct answer is Option (3) - $\left(\frac{1}{4}, \frac{1}{2}\right)$

$y^2=x$

$2y\frac{dy}{dx}=1⇒\frac{dy}{dx}=\frac{1}{2y}$ when $θ=\frac{\pi}{4}$ with x axis

$\frac{1}{2y}=\tan \frac{\pi}{4}⇒\frac{1}{2y}=1⇒y=\frac{1}{2},x=\frac{1}{4}$

$\left(\frac{1}{4}, \frac{1}{2}\right)$ → point