The area of the region enclosed between the curves $4 x^2=y$ and $y=4$ is: |
16 sq. units $\frac{32}{3}$ sq. units $\frac{8}{3}$ sq. units $\frac{16}{3}$ sq. units |
$\frac{16}{3}$ sq. units |
The correct answer is Option (4) → $\frac{16}{3}$ sq. units $4 x^2=y$, $y=4$ at $y=4$, $4 x^2=4$ $x=±1$ area required = $4×2-\int\limits_{-1}^14x^2dx$ $=4×2-2\int\limits_0^14x^2dx$ $=8-8\left[\frac{x^3}{3}\right]_0^1$ $=\frac{16}{3}$ sq. units |