Match List I with List II
Choose the correct answer from the options given below : | ||||||||||||||||||||
A-I, B-III, C-II, D-IV A-III, B-I, C-IV, D-II A-II, B-IV, C-III, D-I A-III, B-I, C-II, D-IV |
A-III, B-I, C-II, D-IV |
The correct answer is Option (4) → A-III, B-I, C-II, D-IV (A) $f(x)=25x-\frac{5x^2}{2}+7$ for max. value, $f'(c)=0$ $⇒25-5x=0$ $⇒x=5$ $f(5)=125-\frac{125}{2}+7=\frac{139}{2}$ (B) $f(x)=2x^3-15x^2+36x+1$ for min. value $f'(c)=0$ $⇒f'(c)=6x^2-30x+36=0$ $⇒x^2-5x+6=0$ $⇒(x-3)(x-2)=0$ $x=3\,or\,2$ $⇒f''(c)>0⇒2x-5>0$ for $f''(3)=2×3-5>0$ $∴f(3)=2×27-15×9+36×3+1=24$ (C) $f(x)=\frac{x}{2}-x^2$ for max. value $f'(c)=0$ $⇒\frac{1}{2}-2x=0$ $⇒x=\frac{1}{4}$ $∴f(\frac{1}{4})=\frac{1}{8}-\frac{1}{16}=\frac{1}{16}$ (D) $f(x)=\frac{9}{(x+3)}+x$ for min. value $f'(c)=0$ $⇒\frac{-9}{(x+3)^2}+1=0$ $⇒(x+3)^2=9$ $⇒x+3=3$ or $x+3=-3$ $⇒x=0$, $x=-6$ $f(-6)=\frac{9}{-6+3}+(-6)$ $=\frac{9}{-3}+(-6)$ $=-9=\frac{-36}{4}$ |