For $x∈(0,\frac{\pi}{2}),\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}}dx$ is equal to |
$\sin^{-1}(\sin2x)+C$, C is an arbitary constant $\sin^{-1}(\cos x-\sin x) + C$, C is an arbitary constant $\sin^{-1}(\sin x-\cos x) + C$, C is an arbitary constant $\sin^{-1}(\sin x+\cos x) + C$, C is an arbitary constant |
$\sin^{-1}(\sin x-\cos x) + C$, C is an arbitary constant |
The correct answer is Option (3) → $\sin^{-1}(\sin x-\cos x) + C$, C is an arbitary constant Given integral: $\int \frac{\sin x + \cos x}{\sqrt{\sin 2x}}\,dx$ Let $I = \int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$ Put $u = \sin x - \cos x \Rightarrow du = (\cos x + \sin x)\,dx$ Also, $\sin 2x = 2 \sin x \cos x = 1 - (\sin x - \cos x)^2$ Hence after substitution and simplification, the integral becomes: $I = \sin^{-1} (\sin x - \cos x) + C$ Final Answer: ${ \sin^{-1} (\sin x - \cos x) + C }$ |