In the following figure ABCDEF is a regular hexagon. If $\overrightarrow{A B}=\vec{a}$ and $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{b}}$ then $\overrightarrow{\mathrm{CD}}$ in terms of a and b is : |
\(\vec{a} + \vec{b}\) \(\vec{a} - \vec{b}\) \(\vec{b} - \vec{a}\) \(3\vec{b} - \vec{a}\) |
\(\vec{b} - \vec{a}\) |
The correct answer is option (3) → \(\vec{b} - \vec{a}\) Expressing $\vec{CD}$ in terms of $\vec a$ and $\vec b$ $\vec{CD}=α\vec a+β\vec b$ $\langle -\frac{1}{2},\frac{\sqrt{3}}{2} \rangle=α\langle 1,0 \rangle+β\langle \frac{1}{2},\frac{\sqrt{3}}{2} \rangle$ $α+\frac{β}{2}=-\frac{1}{2}$ ...(1) $\frac{\sqrt{3}}{2}β=\frac{\sqrt{3}}{2}$ ...(2) From (1) and (2), $β=1,α=-1⇒\vec{CD}=\vec b - \vec a$ |