In 5 trials of binomial distribution, the probability of 3 successes is 4 times the probability of 2 successes. The probability of success in each trial is: |
$\frac{1}{5}$ $\frac{4}{5}$ $\frac{3}{4}$ $\frac{2}{3}$ |
$\frac{4}{5}$ |
The correct answer is Option (2) → $\frac{4}{5}$ Given: n = 5, P(3 \text{ successes}) = 4 × P(2 \text{ successes}) Binomial probability formula: $P(k) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$ For 3 successes: $P(3) = \frac{5!}{3!2!} p^3 (1-p)^2 = 10 p^3 (1-p)^2$ For 2 successes: $P(2) = \frac{5!}{2!3!} p^2 (1-p)^3 = 10 p^2 (1-p)^3$ Given: $P(3) = 4 P(2)$ $10 p^3 (1-p)^2 = 4 * 10 p^2 (1-p)^3$ $p^3 (1-p)^2 = 4 p^2 (1-p)^3$ $p = 4 (1-p)$ $p = 4 - 4p \Rightarrow 5p = 4 \Rightarrow p = \frac{4}{5}$ Probability of success in each trial = 4/5 |