Find the values of $a$ and $b$ such that the function $f$ defined by $f(x)=\begin{cases} 5& \text{if}\hspace{.2cm} x \leq 2\\ ax+b& \text{if}\hspace{.2cm} 2< x<10\\ 21,& \text{if}\hspace{.2cm} x\geq 10\\ \end{cases}$ is a continuous function. |
$a=3,b=5$ $a=2,b=1$ $a=1,b=2$ $a=4,b=3$ |
$a=2,b=1$ |
The correct answer is Option (2) → $a=2,b=1$ $f(x)=\begin{cases} 5,& x \leq 2\\ ax+b,& 2< x<10\\ 21,& x\geq 10\\ \end{cases}$ and, f is a continuous function. $∴\lim\limits_{x→2^-}=\lim\limits_{x→2^+}ax+b=f(2)$ $⇒5=2a+b$ ...(1) and, $\lim\limits_{x→10^-}ax+b=\lim\limits_{x→10^+}(21)$ $⇒10a+b=21$ ...(2) ∴ Solving (1) and (2), $b=1$ and $a=2$ |