The angular momentum of an electron moving in the circular path of diameter D in uniform magnetic field $B_0$ is |
zero $(e\, B_0\, D)/2$ $(e\, B_0\, D^2)/2$ $(e\, B_0\, D^2)/4$ |
$(e\, B_0\, D^2)/4$ |
The correct answer is Option (4) → $(e\, B_0\, D^2)/4$ For an electron of charge $e$ and mass $m$, moving in a uniform magnetic field $B_0$: The magnetic force provides the centripetal force: $\frac{m v^2}{r} = e v B_0$ $\Rightarrow v = \frac{e B_0 r}{m}$ Angular momentum: $L = m v r = m \cdot \frac{e B_0 r}{m} \cdot r = e B_0 r^2$ Since $r = \frac{D}{2}$, $L = e B_0 \left(\frac{D}{2}\right)^2 = \frac{e B_0 D^2}{4}$ Therefore, $L = \frac{e B_0 D^2}{4}$ |