$\int\limits_{\sqrt{\log_e2}}^{\sqrt{\log_e4}}xe^{x^2}dx$ is equal to |
$\frac{1}{2}$ 1 2 4 |
1 |
The correct answer is Option (2) → 1 Evaluate: $\int_{\sqrt{\ln 2}}^{\sqrt{\ln 4}} x e^{x^2} \, dx$ Let $u = x^2 \Rightarrow du = 2x \, dx \Rightarrow x \, dx = \frac{1}{2} \, du$ Change limits: When $x = \sqrt{\ln 2} \Rightarrow u = \ln 2$ When $x = \sqrt{\ln 4} \Rightarrow u = \ln 4$ So the integral becomes: $\int_{\ln 2}^{\ln 4} \frac{1}{2} e^u \, du = \frac{1}{2} \int_{\ln 2}^{\ln 4} e^u \, du$ $= \frac{1}{2} \left[ e^u \right]_{\ln 2}^{\ln 4}$ $= \frac{1}{2} (e^{\ln 4} - e^{\ln 2}) = \frac{1}{2} (4 - 2)$ $= \frac{1}{2} \cdot 2 = 1$ |