An equilateral prism is made of material of refractive index $\sqrt{3}$. Angle of minimum deviation through the prism is: |
60° 30° 45° 0° |
60° |
The correct answer is Option (1) → 60° To calculate the angle of minimum deviation, Refractive index, $μ=\frac{\sin\left(\frac{A+δ_{min}}{2}\right)}{\sin\left(\frac{A}{2}\right)}$ for an equilateral prism: $A=60°$ $⇒\sin\left(\frac{A+δ_{min}}{2}\right)=μ\sin\left(\frac{A}{2}\right)$ $⇒\sin\left(\frac{A+δ_{min}}{2}\right)=\sqrt{3}×\frac{1}{2}=\frac{\sqrt{3}}{2}$ $⇒\frac{A+δ_{min}}{2}=60°$ $⇒δ_{min}=120-A=60°$ |