The area of the region bounded by $x=y^2$ and the line $x=4$ in square units is : |
4 8 $\frac{16}{3}$ $\frac{32}{3}$ |
$\frac{32}{3}$ |
$x=y^2, ~~x=4$ for $x=4$ $y^2=4$ $y= \pm 2$ point of Intersection of $x=4~~~y^2=x$ are $(4,2)$ and $(4,-2)$ cercus is symmetrical about x axis area of port I = area of port II area of figure (Ar.) = 2 × area of port I Ar. = $2 x \int\limits_0^4 \sqrt{x} d x$ $x=y^2$ $\Rightarrow y=\sqrt{x}$ Ar. = $2 \int\limits_0^4 x^{1 / 2} d x =2\left[\frac{x^{1 / 2+1}}{\frac{1}{2}+1}\right]_0^4=2\left[\frac{x^{3 / 2}}{\frac{3}{2}}\right]_0^4$ $=\frac{2 \times 2}{3} \times 4^{3 / 2}-0$ Ar. = $\frac{4}{3} \times 8=\frac{32}{3}$ |