Identify the equations of lines through origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at an angle $\frac{\pi}{3}$. A. $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}$ Choose the correct answer from the options given below: |
A and B only A and C only A and D only B and C only |
A and D only |
The correct answer is Option (3) - A and D only so $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}=λ$ $x=2λ+3,y=λ+3,z=λ$ (Point of intersection) DR of current line → (2, 1, 1) → $\vec a$ DR line through → $(2λ+3, λ+3, λ)$ → $\vec b$ $\vec a.\vec b=ab\cos \frac{π}{3}$ $\vec a.\vec b=\frac{ab}{2}$ $=2(4λ+6+λ+3+λ)=\sqrt{6}\sqrt{4λ^2+12λ+9+λ^2+6λ+9}$ $2(6λ+9)=\sqrt{6}\sqrt{6λ^2+18λ+18}$ $(2λ+3)=\sqrt{λ^2+3λ+3}$ squaring both side $4λ^2+12λ+9=λ^2+3λ+3$ $λ^2+3λ+2=0$ $λ=-1,-2$ DR of $\vec b$ = (1, 2, -1) OR (-1, 1, -2) lines → $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}$ or $\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}$ |