A plano-convex lens has focal length 0.5 m and the refractive index of the material of the lens is 1.5. The radius of curvature of the convex surface of the lens is |
0.15 m 0.30 m 0.25 m 0.50 m |
0.25 m |
The correct answer is Option (3) → 0.25 m Given: focal length $f=0.5\ \mathrm{m}$, refractive index $\mu=1.5$. Lens maker’s formula: $\frac{1}{f}=(\mu-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ For a plano-convex lens: one surface is plane $\Rightarrow R_2=\infty$, and convex surface radius = $R_1=R$. So, $\frac{1}{f}=(\mu-1)\frac{1}{R}$ $R=(\mu-1)f$ Substitute values: $R=(1.5-1)\times 0.5=0.5\times 0.5=0.25\ \mathrm{m}$ Final Answer: Radius of curvature $R=0.25\ \mathrm{m}=25\ \mathrm{cm}$ |