For the cell in which of the following occurs: \(2Au^{3+} (aq) + 6Br^- (aq) \longrightarrow 2Au(s) + 3Br_2 (l)\) has \(E^o_{cell} = 2.49 V\) at \(298 K\) The standard Gibbs energy change will be: |
\(- 1742 kJ\) \(- 1642 kJ\) \(- 1542 kJ\) \(- 1442 kJ\) |
\(- 1442 kJ\) |
The correct answer is option 4. \(- 1442 kJ\). To determine the standard Gibbs free energy change (\(\Delta G^\circ\)) for the given cell reaction, we use the relationship between the cell potential and the Gibbs free energy change: \(\Delta G^\circ = -nFE^\circ_{\text{cell}}\) -----(i) where: \( n \) = number of moles of electrons transferred in the reaction \( F \) = Faraday constant (\( F \approx 96500 \, \text{C/mol} \)) \( E^\circ_{\text{cell}} \) = standard cell potential From the given reaction: Each \(Au^{3+}\) ion gains 3 electrons to become \(Au\), and there are 2 \(Au^{3+}\) ions involved, so: \(2 \text{ moles of } Au^{3+} \text{ gain } 2 \times 3 = 6 \text{ moles of electrons}\) Thus, \( n = 6 \). Applying the values in equation (i), we get Substituting \( n = 6 \), \( F = 96500 \, \text{C/mol} \), and \( E^\circ_{\text{cell}} = 2.49 \, \text{V} \): \(\Delta G^\circ = -6 \times 9500 \, \text{C/mol} \times 2.49 \, \text{V}\) \(⇒ \Delta G^\circ = -1441710\, \text{J/mol}\) \(⇒ \Delta G^\circ = -1441.710 \, \text{kJ/mol}\) \(⇒ \Delta G^\circ \approx -1442\, \text{kJ/mol}\) |