If (tanθ + secθ) = 7, θ is acute angle than find the value of 5sinθ. |
\(\frac{25}{34}\) \(\frac{24}{25}\) \(\frac{1}{24}\) \(\frac{24}{5}\) |
\(\frac{24}{5}\) |
sec2θ - tan2θ = 1 (secθ + tanθ)(secθ - tanθ) = 1 (7)(secθ - tanθ) = 1 (secθ - tanθ) = \(\frac{1}{7}\) secθ + tanθ = 7 ...(i) secθ - tanθ = \(\frac{1}{7}\) ...(ii) Adding eq. (i) and (ii) 2secθ = \(\frac{50}{7}\) secθ = \(\frac{25}{7}\)=\(\frac{H}{B}\) P = 24 5sinθ = 5×\(\frac{24}{25}\) = \(\frac{24}{5}\) |