Subject to constraints $2x+4y ≤ 8, 3x + y ≤ 6, x + y ≤ 4, x, y ≥ 0$; the maximum value of $Z=3x+15y$ is: |
6 22.8 48 25 |
48 |
The correct answer is Option (3) → 48 Equations to find intersection points, $2x+4y ≤ 8$ ...(1) $3x + y ≤ 6$ ...(2) $x + y ≤ 4$ ...(3) (1) Intersection point of (1) and (2) $⇒2x+4y ≤ 8$ $x+2y ≤ 4$ $x=4-2y$ $⇒3x + y ≤ 6$ $3(4-2y)+y=6$ $12-6y+y=6$ $5y=6$ $y=1.2$ $∴x=4-2(1.2)=1.6$ (2) Intersection of (2) & (3) $⇒x + y = 4$ $y=4-x$ $⇒3x+y=6$ $3x+4-x=6$ $2x+4=6$ $2x=2$ $x=1$ $∴y=4-(1)=3$ (3) Intersection of (1) & (3) $⇒x+y=4$ $x=4-y$ $⇒2x+4y=8$ $2(4-y)+4y=8$ $8+2y=8$ $2y=0$ $y=0$ $∴x=4-0=4$ Evaluate $Z=3x+15y$
∴ Maximum value of Z occurs at (1, 3) is equal to 48. |