Target Exam

CUET

Subject

Physics

Chapter

Electrostatic Potential and Capacitance

Question:

Four equal charges Q are placed at the four corners of a square of side 'a'. Work done in removing a charge -Q from its centre to infinity is:

Options:

zero

$\frac{\sqrt{2} Q^2}{4 \pi \epsilon_{o} a} V$

$\frac{\sqrt{2} Q^2}{\pi \epsilon_{o} a} V$

$\frac{-Q^2 \sqrt{2}}{2 \pi \epsilon_{o} a} V$

Correct Answer:

$\frac{\sqrt{2} Q^2}{\pi \epsilon_{o} a} V$

Explanation:

The correct answer is Option (3) → $\frac{\sqrt{2} Q^2}{\pi \epsilon_{o} a} V$

The potential due to a single charge Q at a distance r is -

$V=\frac{kQ}{r}$

and,

Distance from center to vertices = $r=\frac{\sqrt{2}a}{2}=\frac{a}{\sqrt{2}}$

∴ Potential due to all 4 charges = $4×\frac{kQ\sqrt{2}}{a}=4×\frac{Q\sqrt{2}}{4πε_0a}$

$=\frac{Q\sqrt{2}}{πε_0a}$

$W=-qV$

$=-(-Q)×\frac{Q\sqrt{2}}{πε_0a}=\frac{Q^2\sqrt{2}}{πε_0a}$