Four equal charges Q are placed at the four corners of a square of side 'a'. Work done in removing a charge -Q from its centre to infinity is: |
zero $\frac{\sqrt{2} Q^2}{4 \pi \epsilon_{o} a} V$ $\frac{\sqrt{2} Q^2}{\pi \epsilon_{o} a} V$ $\frac{-Q^2 \sqrt{2}}{2 \pi \epsilon_{o} a} V$ |
$\frac{\sqrt{2} Q^2}{\pi \epsilon_{o} a} V$ |
The correct answer is Option (3) → $\frac{\sqrt{2} Q^2}{\pi \epsilon_{o} a} V$ The potential due to a single charge Q at a distance r is - $V=\frac{kQ}{r}$ and, Distance from center to vertices = $r=\frac{\sqrt{2}a}{2}=\frac{a}{\sqrt{2}}$ ∴ Potential due to all 4 charges = $4×\frac{kQ\sqrt{2}}{a}=4×\frac{Q\sqrt{2}}{4πε_0a}$ $=\frac{Q\sqrt{2}}{πε_0a}$ $W=-qV$ $=-(-Q)×\frac{Q\sqrt{2}}{πε_0a}=\frac{Q^2\sqrt{2}}{πε_0a}$ |