If A and B are invertible matrices of the same order, then |
$AB = BA$ $(AB)^{-1}=B^{-1}A^{-1}$ $(AB)^{-1}=A^{-1}B^{-1}$ $AB^{-1}=B^{-1}A$ |
$(AB)^{-1}=B^{-1}A^{-1}$ |
The correct answer is Option (2) → $(AB)^{-1}=B^{-1}A^{-1}$ Given, A and B are matrices such that they all invertible and also of same order. $(AB)^{-1}=B^{-1}A^{-1}$ |