The area of the region bounded by the curve y = \(\frac{1}{1 + \sqrt{\tan {x}}}\) and the x-axis between the ordinates x = \(\frac{\pi}{6}\) and x = \(\frac{\pi}{3}\) is : |
\(\frac{\pi}{4}\) \(\frac{\pi}{2}\) \(\frac{\pi}{8}\) None of these |
None of these |
y = \(\frac{1}{1 + \sqrt{\tan {x}}}\) = \(\frac{\sqrt{\cos {x}}}{\sqrt{\ sin {x}} + \sqrt{\cos {x}}}\) Area bounded between the intervals x = \(\frac{\pi}{6}\) and x = \(\frac{\pi}{3}\) is given by A = \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}d\)x [\(\frac{\sqrt{\cos {x}}}{\sqrt{\ sin {x}} + \sqrt{\cos {x}}}\)] = \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}d\)x [\(\frac{\sqrt{\cos {\frac{\pi}{3} + \frac{\pi}{6} -x}}}{\sqrt{\ sin {\frac{\pi}{3} + \frac{\pi}{6} -x}} + \sqrt{\cos {\frac{\pi}{3} + \frac{\pi}{6} -x}}}\)] = \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}d\)x [\(\frac{\sqrt{\sin {x}}}{\sqrt{\ sin {x}} + \sqrt{\cos {x}}}\)] 2A = \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}d\)x ⇒ A = \(\frac{1}{2} [\frac{\pi}{3} - \frac{\pi}{6}] \) = \(\frac{\pi}{12}\) sq. units.
|