A thick long straight wire of radius 'a' is carrying steady current I. The current I is uniformly distributed across the cross- section. The ratio of magnetic fields at a distance a/2 and 3a/2 from the central axis of the wire is |
2:3 3:2 3:4 4:3 |
3:4 |
The correct answer is Option (3) → 3:4 Given: Radius of wire $= a$ Current $= I$ (uniform distribution) Magnetic field inside the wire ($r < a$): $B = \frac{\mu_0 I r}{2 \pi a^2}$ At $r = \frac{a}{2}$: $B_{in} = \frac{\mu_0 I \cdot (a/2)}{2 \pi a^2} = \frac{\mu_0 I}{4 \pi a}$ Magnetic field outside the wire ($r > a$): $B = \frac{\mu_0 I}{2 \pi r}$ At $r = \frac{3a}{2}$: $B_{out} = \frac{\mu_0 I}{2 \pi (3a/2)} = \frac{\mu_0 I}{3 \pi a}$ Ratio: $\frac{B_{in}}{B_{out}} = \frac{\frac{\mu_0 I}{4 \pi a}}{\frac{\mu_0 I}{3 \pi a}} = \frac{3}{4}$ Final Answer: Ratio $= \frac{3}{4}$ |