The demand function of a monopolist is given by $p = 1500- 2x- x^2$, then value of marginal revenue when x = 20 is : |
220 200 240 280 |
220 |
The correct answer is Option (1) → 220 The demand function, $P(x)=1500-2x-x^2$ Total revenue = $P×x=(1500-2x-x^2)x$ $=1500x-2x^2-x^3$ $MR=\frac{d(TR)}{dx}=1500-4x-3x^2$ Substituting $x=20$, $MR=1500-4(20)-3(20)^2$ $=220$ |