A hemisphere of radius R is placed between two uniformly charged-thin infinite sheets of charge density $+σ$ and $-σ$. Flux through the curved surface of the hemisphere |
$\frac{σ}{2ε_0}(πR)$ $\frac{σ}{ε_0}(πR^2)$ $\frac{σ}{ε_0}(2πR^2)$ Zero |
$\frac{σ}{ε_0}(πR^2)$ |
The correct answer is Option (2) - $\frac{σ}{ε_0}(πR^2)$ $\phi_ε=\int\vec E.d\vec a$ where, $\phi_ε$ = flux $\vec E$ = Electric field intensity $d\vec a$ = Area vector $\vec E$ produced by thin infinite sheet = $\frac{σ}{ε_0}$ [formula] $∴\phi_ε=\int\frac{σ}{ε_0}.da$ $=\frac{σ}{ε_0}\int da=\frac{σ}{ε_0}(\pi R^2)$ [As θ = 0°, because $\vec E$ are perpendicular to the base of hemisphere] |