Let f : R → R be differentiable at x = 0 and satisfies f(0) = 0 and f'(0) = 1, then the value of $\lim\limits_{x \rightarrow 0} \frac{1}{x} \sum\limits_{n=1}^{\infty}(-1)^n f\left(\frac{x}{n}\right)$ is |
0 -ln 2 1 e |
-ln 2 |
$\lim\limits_{x \rightarrow 0} \frac{1}{x} \sum\limits_{n=1}^{\infty}(-1)^n f\left(\frac{x}{n}\right)$ $=\lim\limits_{x \rightarrow 0} \sum\limits_{n=1}^{\infty}(-1)^n f\left(\frac{x}{n}\right) . \frac{1}{x}$ $=\lim\limits_{x \rightarrow 0} \sum\limits_{n=1}^{\infty}(-1)^n \times \frac{f\left(\frac{x}{n}\right)-f(0)}{\left(\frac{x}{n}\right)} \times \frac{1}{n}$ $=\sum\limits_{n=1}^{\infty} \times \frac{(-1)^n}{n} \lim\limits_{x \rightarrow 0} \frac{f\left(\frac{x}{n}\right)-f(0)}{\frac{x}{n}}$ $=\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n} f'(0)=\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n}=-\ln 2$ |