If A, B and C are three singular matrices given by $A=\left[\begin{array}{cc}1 & 4 \\ 3 & 2 a\end{array}\right], \quad B=\left[\begin{array}{cc}3 b & 5 \\ a & 2\end{array}\right]$ and $C=\left[\begin{array}{cc}a+b+c & c+1 \\ a+c & c\end{array}\right]$, then the value of $a b c$ is: |
15 30 45 90 |
45 |
The correct answer is Option (3) → 45 For A, B and C to be non-singular. |A|, |B| and |C| should be equal to zero. $⇒|A|=2a-12=0$ $⇒a=\frac{12}{2}=6$ and, $|B|=6b-5a$ $⇒6b-5a=0$ $⇒b=\frac{5×6}{6}=5$ and, $|C|=c(a+b+c)-(a+c)(c+1)=0$ $⇒c(11+c)-(6+c)(c+1)=0$ $⇒11c+c^2-6-c^2-7c=0$ $⇒4c=6$ $⇒c=\frac{3}{2}$ $a=6,b=5,c=\frac{3}{2}$ $∴abc=6×5×\frac{3}{2}=9×5=45$ |