$\int\limits^{\frac{\pi }{3}}_{\frac{\pi }{6}}\frac{1}{1+\sqrt{cotx}}dx$ is equal to : |
$\frac{\pi }{3}$ $\frac{\pi }{6}$ $\frac{\pi }{12}$ $\frac{\pi }{2}$ |
$\frac{\pi }{12}$ |
The correct answer is option (3) → $\frac{\pi }{12}$ $I=\int\limits^{\frac{\pi }{3}}_{\frac{\pi }{6}}\frac{1}{1+\sqrt{\cot x}}dx$ ...(1) $I=\int\limits^{\frac{\pi }{3}}_{\frac{\pi }{6}}\frac{1}{1+\sqrt{\cot (\frac{\pi }{3}+\frac{\pi }{6}-x)}}dx⇒I=\int\limits^{\frac{\pi }{3}}_{\frac{\pi }{6}}\frac{1}{1+\sqrt{\tan x}}dx$ $⇒\int\limits^{\frac{\pi }{3}}_{\frac{\pi }{6}}\frac{\sqrt{\cot x}}{1+\sqrt{\cot x}}dx$ ...(2) adding (1) and (2) $2I=\int\limits^{\frac{\pi }{3}}_{\frac{\pi }{6}}1dx⇒I=\frac{\pi }{12}$ |