CUET Preparation Today
CUET
-- Mathematics - Section B1
Vectors
If →e1=(1,1,1) and →e2=(1,1,−1) and →a and →b are two vectors such that →e1=2→a+→b and →e2=→a+2→b, then angle between →a and →b is
cos−1(79)
cos−1(711)
cos−1(−711)
cos−1(6√211)
We have,
2→a+→b=ˆi+ˆj+ˆk and →a+2→b=ˆi+ˆj−ˆk
Solving these two equations, we get
→a=13(ˆi+ˆj+3ˆk) and →b=13(ˆi+ˆj−3ˆk)
∴\cos θ=\frac{\vec a .\vec b}{|\vec a||\vec b|}⇒\cos θ=-\frac{7}{11}⇒θ=\cos^{-1}(-\frac{7}{11})