Let $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all real values of x and y. If f'(0) exists and equals -1 and f(0) = 1, then f'(2) is equal to |
-1 1 0 none of these |
-1 |
We have, $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all $x, y \in R$ .......(i) $\Rightarrow f\left(\frac{x+0}{2}\right)=\frac{f(x)+f(0)}{2}$ for all $x \in R$ [Putting y = 0] $\Rightarrow f\left(\frac{x}{2}\right)=\frac{f(x)+1}{2}$ for all $x \in R$ $\Rightarrow f(x)=2 f\left(\frac{x}{2}\right)-1$ for all $x \in R$ .......(ii) Now, $f'(2) =\lim\limits_{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$ $\Rightarrow f'(2) =\lim\limits_{h \rightarrow 0} \frac{f\left(\frac{4+2 h}{2}\right)-f(2)}{h}$ $\Rightarrow f'(2) =\lim\limits_{h \rightarrow 0} \frac{\frac{f(4)+f(2 h)}{2}-f(2)}{h}$ [Using (i)] $\Rightarrow f'(2)=\lim\limits_{h \rightarrow 0} \frac{f(4)+f(2 h)-2 f(2)}{2 h}$ $\Rightarrow f'(2) =\lim\limits_{h \rightarrow 0} \frac{2 f(2)-1+2 f(h)-1-2 f(2)}{2 h}$ [Putting x = 4 and 2h respectively in (ii)] $\Rightarrow f'(2)=\lim\limits_{h \rightarrow 0} \frac{f(h)-1}{h}$ $\Rightarrow f'(2)=\lim\limits_{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f'(0)=-1$ |