Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

The value of the integral $I=\int\limits^{2}_{-1}|x|dx$ is :

Options:

0

$\frac{1}{2}$

$\frac{5}{2}$

$\frac{3}{2}$

Correct Answer:

$\frac{5}{2}$

Explanation:

The correct answer is Option (3) → $\frac{5}{2}$

$I=\int\limits^{2}_{-1}|x|dx=\int\limits_{-1}^0-xdx+\int\limits^{2}_0xdx$

$=\left[\frac{-x^2}{2}\right]_{-1}^0+\left[\frac{x^2}{2}\right]^{2}_0$

$=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}$