The value of the integral $I=\int\limits^{2}_{-1}|x|dx$ is : |
0 $\frac{1}{2}$ $\frac{5}{2}$ $\frac{3}{2}$ |
$\frac{5}{2}$ |
The correct answer is Option (3) → $\frac{5}{2}$ $I=\int\limits^{2}_{-1}|x|dx=\int\limits_{-1}^0-xdx+\int\limits^{2}_0xdx$ $=\left[\frac{-x^2}{2}\right]_{-1}^0+\left[\frac{x^2}{2}\right]^{2}_0$ $=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}$ |