The least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is |
$4\sqrt{3}r$ $2\sqrt{3}r$ $6\sqrt{3}r$ $8\sqrt{3}r$ |
$6\sqrt{3}r$ |
2s = AB + BC + CA = 2AB + 2BD $\Rightarrow s =A B+B D=A F+2 B D=r \cot \alpha+2 A D \tan \alpha$ $=r \cot \alpha+2(r+r ~cosec \alpha) \tan \alpha$ $=r(\cot \alpha+2 \tan \alpha+2 \sec \alpha)$ Find $\frac{d s}{d \alpha}$ and $\frac{d s}{d \alpha}=0 \Rightarrow \alpha=\frac{\pi}{6}$ ∴ $2 s=6 r \sqrt{3}$. |