Derivative of x3 + 1 with respect to x2 + 1 is |
$\frac{2 x}{3}$ $\frac{x}{3}$ $\frac{x}{2}$ $\frac{3 x}{2}$ |
$\frac{3 x}{2}$ |
$z = x^3+1$ $y = x^2+1$ $\frac{dz}{dx} = 3x^2$ $\frac{dy}{dx} = 2x$ so $\frac{dz/dx}{dy/dx} = \frac{dz}{dy} = \frac{3x^2}{2x}$ so $\frac{d(x^3+1)}{d(x^2+1)} =\frac{3x}{2} $ Option: 4 |