If $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$ then $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$ is equal to : |
abc -abc 0 1 |
abc |
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$ $\Delta=\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$ $\Delta=a b c\left|\begin{array}{ccc}\frac{1}{a}+1 & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1\end{array}\right|$ (Multiplying by abc and dividing rows by a, b, c respectively) $R_1 \rightarrow R_1+R_2+R_3$ $\Delta=a b c\left|\begin{array}{ccc}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 & \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 & \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1 \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1\end{array}\right|$ $\Delta=a b c\left|\begin{array}{ccc}1 & 1 & 1 \\ \frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1\end{array}\right|$ (as $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$) $C_2 → C_2 - C_1$ $C_3 → C_3 - C_1$ $\Delta=a b c\left|\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{b} & 1 & 0 \\ \frac{1}{c} & 0 & 1\end{array}\right|$ $\Delta=a b c$ |