Two particles $P_1$ and $P_2$, having equal charges accelerated by the same potential difference enter a region of a uniform magnetic field and describe circular paths of radii $R_1$ and $R_2$, respectively. The ratio of the mass of $P_1$ to that of $P_2$ will be |
$(R_1/R_2)^2$ $(R_1/R_2)$ $(R_1/R_2)^{0.5}$ $(R_2/R_1)^2$ |
$(R_1/R_2)^2$ |
The correct answer is Option (1) → $(R_1/R_2)^2$ For a charged particle moving in a magnetic field: Magnetic force provides centripetal force: $qvB = \frac{mv^2}{R} \text{ implies }R = \frac{mv}{qB}$ Velocity after acceleration through potential difference V: $ \frac{1}{2} m v^2 = qV \text{ implies }v = \sqrt{\frac{2qV}{m}} $ Substitute $v$ into $R = \frac{mv}{qB}$: $R = \frac{m}{qB} \sqrt{\frac{2qV}{m}} = \frac{\sqrt{2mV}}{B\sqrt{q}}$ For equal charges $q$ and same V: $\frac{R_1}{R_2} = \frac{\sqrt{m_1}}{\sqrt{m_2}} \text{ implies } \frac{m_1}{m_2} = \left(\frac{R_1}{R_2}\right)^2$ Mass ratio: $m_1/m_2 = (R_1/R_2)^2$ |