$\int \sqrt{1-49 x^2} d x$ is equal to |
$\frac{x}{2}\left(\sqrt{1-49 x^2}\right)+\frac{1}{98} \sin ^{-1} 7 x+C$ $\frac{7 x}{2} \sqrt{1+49 x^2}+\frac{1}{49} \sin ^{-1} x+C$ $\frac{x}{2} \sqrt{1+1 / 7 x^2}-\frac{1}{49} \sin ^{-1} 7 x+C$ $\frac{x}{2} \sqrt{1-49 x^2}+\frac{1}{14} \sin ^{-1} 7 x+C$ |
$\frac{x}{2} \sqrt{1-49 x^2}+\frac{1}{14} \sin ^{-1} 7 x+C$ |
$\int \sqrt{1- (7x)^2} d x$ Let y = 7x so dy = 7dx ⇒ $\frac{dy}{7} = dx$ So $I = \frac{1}{7} \int \sqrt{1-y^2} dy$ $=\frac{1}{7} \left[\frac{y}{2} \sqrt{1-y^2} + \frac{1}{2} \sin^{-1} y + C\right]$ $\Rightarrow \frac{1}{7} \times \frac{7x}{2} \sqrt{1 - 49x^2}+\frac{1}{7 \times 2} \sin ^{-1} 7x+C$ $=\frac{x}{2} \sqrt{1-49 x^2}+\frac{1}{14} \sin ^{-1} 7x+C$ Option: 4 |