If the mean and standard deviation of a binomial distribution are 8 and 2 respectively, then the probability of two successes is: |
$\frac{15}{4096}$ $\frac{3}{1024}$ $\frac{5}{65536}$ $\frac{15}{1024}$ |
$\frac{15}{4096}$ |
The correct answer is Option (1) → $\frac{15}{4096}$ Mean (μ) = n.p Variance $(σ)^2=n.p(1-p)$ Standard deviation = $\sqrt{σ^2}=σ$ From $μ=n.p=8$ From $σ^2=n.p(1-p)$ $n.p(1-p)=4$ (since $σ=2⇒σ^2=4$) $⇒8.(1-p)=4$ $8-8p=4$ $=4=8p$ $p=\frac{1}{2}=0.5$ From $μ=n.p$ $n.0.5=8$ $n=16$ Probability mass function of a binomial distribution $P(X=r)={^nC}_r.p^r.(1-p)^{n-r}$ $r=2,n=16,p=0.5$ ${^{16}C}_r.(0.5)^2.(0.5)^{16-2}$ $⇒\frac{16!}{14!2!}.(0.5)^{16}$ $⇒\frac{16.15}{2}.\frac{1}{2^{16}}$ $⇒\frac{120}{2^{16}}≃\frac{15}{4096}$ |