The order and degree of the differential equation $\sqrt{sin\, x}(dx+dy)=\sqrt{cos\, x}(dx-dy)$ is : |
2, 1 2, 2 1, 2 1, 1 |
1, 1 |
The correct answer is option (4) → 1, 1 $\sqrt{\sin x}(dx+dy)=\sqrt{\cos x}(dx-dy)$ so $\sqrt{\sin x}(1+\frac{dy}{dx})=\sqrt{\cos x}(1-\frac{dy}{dx})$ so $\sqrt{\sin x}+\sqrt{\sin x}\frac{dy}{dx}=\sqrt{\cos x}-\sqrt{\cos x}\frac{dy}{dx}$ so $\frac{dy}{dx}=\frac{\sqrt{\cos x}-\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}}$ order → 1, degree → 1 |