If $y=2at, x=at^2, a≠0, $ then $\frac{d^2y}{dx^2}$ is equal to : |
$-\frac{a}{xy}$ $\frac{a}{xy}$ $\frac{xy}{a}$ $-\frac{xy}{a}$ |
$-\frac{a}{xy}$ |
$y=2at, x=at^2$ $\frac{dy}{dt}=2at$ $\frac{dx}{dt}=2at$ $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{1}{t}$ $\frac{d^2y}{dx^2}=\frac{d}{dx}\left(\frac{1}{t}\right)$ $⇒\frac{d}{dt}\left(\frac{1}{t}\right)\frac{dt}{dx}$ $⇒\frac{-1}{t^2}.\frac{1}{\frac{dx}{dt}}$ $⇒\frac{-1}{t^2}.\frac{1}{2at}$ $⇒\frac{-1}{2at^3}$ |