A right angled triangle has its longest side BC that is diameter of a circle of radius r and a vertex A lying on the circle. Maximum area that the triangle ABC can enclose is |
$r^2$ $2 r^2$ $\frac{r^2}{2}$ $\frac{\pi}{2} r^2$ |
$r^2$ |
The correct answer is Option (1) - $r^2$ let $AB=x$ $AC=\sqrt{(2r)^2-x^2}=\sqrt{4r^2-x^2}$ area = $\frac{1}{2}x\sqrt{4r^2-x^2}=\frac{1}{2}\sqrt{4r^2x^2-x^4}$ To increase area we maximise $f(x)=4r^2x^2-x^4$ $f'(x)=8r^2x-4x^3=0$ $x=0$ (not possible), $x=r\sqrt{2}$ $f''(x)=8r^2-4×3x^2$ $f''(r×\sqrt{2})=-16r^2<0$ so $r\sqrt{2}$ (point of increase) so area = $\frac{1}{2}r\sqrt{2}\sqrt{4r^2-2r^2}=r^2$ max area = $r^2$ |