The length of perpendicular from the point (1, 0, 1) to the plane x - y + z = 4 is: |
$\frac{2}{\sqrt{3}}$ $\frac{4}{\sqrt{3}}$ $\frac{5}{\sqrt{3}}$ $\frac{8}{\sqrt{3}}$ |
$\frac{2}{\sqrt{3}}$ |
The correct answer is Option (1) → $\frac{2}{\sqrt{3}}$ $\vec n=\hat i-\hat j+\hat k$ let a point be fool of perpendicular on planes from (1, 0, 1) so eq. of line along $\vec n$ containing (1, 0, 1) $\frac{x-1}{1}=\frac{y}{-1}=\frac{z-1}{1}=λ$ $x=λ+1,y=-λ,z=λ+1$ so $λ+1+λ+λ+1=4$ (in eq. of plane) so $3λ=2$ $λ=\frac{2}{3}$ $x=\frac{5}{3},y=-\frac{2}{3},z=\frac{5}{3}$ So distance = $\sqrt{(1-\frac{5}{3})^2+(0+\frac{2}{3})^2+(1-\frac{5}{3})^2}$ $=\frac{2}{\sqrt{3}}$ |