The current through a $4 / 3 \Omega$ external resistance connected to a parallel combination of two cells of 2 V and 1 V emf and internal resistances of $1 \Omega$ and $2 \Omega$ respectively is _______. Fill in the blank with the correct answer from the options given below. |
1 A 2/3 A 3/4 A 5/6 A |
5/6 A |
The correct answer is Option (4) → 5/6 A EMF, $E_1=2V$ with internal resistance, $r_1=1Ω$ EMF, $E_21=1V$ with internal resistance, $r_2=2Ω$ let the common node voltage be V. from cell 1: Current, $I_1=\frac{E_1-V}{r_1}=\frac{2-V}{1}=2-V$ $I_2=\frac{V-E_2}{r_2}=\frac{V-1}{2}$ and, $I_{net}=I_1-I_2=(2-V)-\frac{V_1}{2}$ Load current, $I_R=\frac{V}{R}=\frac{V}{\frac{4}{3}}=\frac{3V}{4}$ By Kirchoff's junction law, $I_R=I_{net}$ $(2-V)-\frac{V-1}{2}=\frac{3V}{4}$ $⇒4(2-V)-2(V-1)=3V$ $⇒8-4V-2V+2=3V$ $⇒10-6V=3V$ $⇒V=\frac{10}{9}V$ $∴I_R=\frac{3}{4}×\frac{10}{9}=\frac{5}{6}A$ |