Let $\begin{aligned} f(x) & = \begin{cases}|x|-3 & , ~x<1 \\ |x-2|+a & , ~x \geq 1\end{cases} \\ g(x) & = \begin{cases}2-|x| & , ~x<1 \\ Sgn(x)-b & , ~x \geq 1\end{cases} \end{aligned}$ If $h(x)=f(x)+g(x)$ is discontinuous at exactly one point, then which of the following are correct? (a) $a=-3, b=0$ (b) $a=-3, b=-1$ (c) $a=2, b=1$ (d) $a=0, b=3$ |
(a), (b) (b), (d) (a), (d) (b), (c) |
(b), (c) |
We have, $f(x)= \begin{cases}-x-3 &, ~x<0 \\ x-3 & , ~0 \leq x<1 \\ -x+2+a &, ~1 \leq x<2 \\ x-2+a &, ~x \geq 2\end{cases}$ and, $g(x)= \begin{cases}2+x & , ~x<0 \\ 2-x & , ~0 \leq x<1 \\ 1-b & , ~1 \leq x<2 \\ 1-b & , ~x \geq 2\end{cases}$ ∴ $h(x)=f(x)+g(x)= \begin{cases}-1 & , ~x<0 \\ -1 & , ~0 \leq x<1 \\ a-b+3-x & , ~\leq x<2 \\ a-b-1+x & , ~x \geq 2\end{cases}$ We observe that h(x) is continuous for all values of x, except at x = 1. At x = 1, it will be discontinuous, if $\lim\limits_{x \rightarrow 1^{-}} h(x) \neq \lim\limits_{x \rightarrow 1^{+}} h(x)$ i.e. if $-1 \neq a-b+2$ or, if $a-b \neq-3$ Clearly, values in options (b) and (c) satisfy this relation. |