If the curves $x=y^2$ and $xy=k$ meet at right angles, then the value of k is : |
$\frac{1}{2}$ $±\frac{1}{\sqrt{2}}$ ±1 $±\frac{1}{2\sqrt{2}}$ |
$±\frac{1}{2\sqrt{2}}$ |
The correct answer is Option (4) → $±\frac{1}{2\sqrt{2}}$ $x=y^2$ ...(1) $xy=k$ ...(2) $2y\frac{dy}{dx}=1$ $⇒\frac{dy}{dx}=\frac{1}{2y}$ $y+x\frac{dy}{dx}=0$ $\frac{dy}{dx}=-\frac{y}{x}$ $⇒\frac{1}{2y}×-\frac{y}{x}=-1$ so $x=\frac{1}{2}$ from (1) $y=±\frac{1}{\sqrt{2}}$ from (2) $k=±\frac{1}{2\sqrt{2}}$ |