Two identical cells of emf 2 V each joined in parallel provide supply to an external circuit containing two resistors of $20 \Omega$ each joined in parallel. A very high resistance voltmeter reads the terminal voltage of the cells to be 1.6 V. The internal resistance of each cell is: |
$8 \Omega$ $10 \Omega$ $2.5 \Omega$ $5 \Omega$ |
$5 \Omega$ |
The correct answer is Option (4) → $5 \Omega$ EMF of each cell, E = 2V$ Terminal voltage, $V=1.6V$ Resistors are connected in parallel and their net resistance is - $R_{eq}=\frac{R}{2}=\frac{20}{2}=10Ω$ Voltage across the external circuit = $1.6V$ $∴I_{ext}=\frac{V}{R_{eq}}=\frac{1.6}{10}=0.16A$ Let $r$ be the internal resistance of each cell. The total internal resistance for each cell is - $r_{total}=\frac{r}{2}$ and, $I_{total}=I_{ext}=0.16A$ By using Kirchhoff's Voltage law - $E-I_{total}.r_{total}=V$ $2V-0.16A.\frac{r}{2}=1.6V$ $⇒r=5 \Omega$ |