The solution of $\frac{7x + 12}{x-9} <4; x ≠ 9$ is: |
$\{x:9< x < 16;x ∈ R\}$ $\{x:-9< x < −16;x ∈ R\}$ $\{x:-16 < x < 9;x ∈ R\}$ $\{x:-16 < x < −9;x ∈ R\}$ |
$\{x:-16 < x < 9;x ∈ R\}$ |
The correct answer is Option (3) → $\{x:-16 < x < 9;x ∈ R\}$ Given inequality: $\frac{7x+12}{x-9} < 4, \ x \ne 9$ Bring all terms to one side: $\frac{7x+12}{x-9} - 4 < 0 \Rightarrow \frac{7x+12 - 4(x-9)}{x-9} < 0$ $\frac{7x+12 - 4x + 36}{x-9} < 0 \Rightarrow \frac{3x + 48}{x-9} < 0 \Rightarrow \frac{3(x + 16)}{x-9} < 0$ Critical points: $x = -16$ (numerator), $x = 9$ (denominator) Check intervals: 1. $x < -16$: numerator negative, denominator negative → fraction positive ❌ 2. $-16 < x < 9$: numerator positive, denominator negative → fraction negative ✅ 3. $x > 9$: numerator positive, denominator positive → fraction positive ❌ $\text{Answer: } -16 < x < 9$ |