Let A and B are two independent events such that $P(A) =\frac{3}{5}$ and $P(B)=\frac{4}{9}$. Match List-I with List-II
Choose the correct answer from the options given below: |
(A)-(III), (B)-(II), (C)-(I), (D)-(IV) (A)-(II), (B)-(III), (C)-(I), (D)-(IV) (A)-(II), (B)-(III), (C)-(IV), (D)-(I) (A)-(II), (B)-(IV), (C)-(I), (D)-(III) |
(A)-(II), (B)-(III), (C)-(I), (D)-(IV) |
The correct answer is Option (2) → (A)-(II), (B)-(III), (C)-(I), (D)-(IV) (A) $P(A∩B)=P(A)×P(B)$ [A and B are independent] $=\frac{3}{5}×\frac{4}{9}=\frac{12}{45}=\frac{4}{15}$ (B) $P(A|B)=\frac{P(A∩B)}{P(B)}=\frac{\frac{4}{15}}{\frac{4}{9}}=\frac{3}{5}$ (C) $P(A'|B)=\frac{P(A'∩B)}{P(B)}=\frac{\frac{2}{5}×\frac{4}{9}}{\frac{4}{9}}=\frac{2}{5}$ (D) $P(A'∩B')=P(A')P(B')$ $=\frac{2}{5}×\frac{5}{9}=\frac{2}{9}$ [A' and B' are also independent events] |