Let X denote the no. of hours a boy plays football on Sunday. Also, we know that : $P (X=x)=\left\{\begin{matrix} k, & if & x=0\\k^2x, & if & x=1\, or \, 2\\k^2(x-1), & if & x=3\\k(x^2-13), & if & x=4 \end{matrix}\right. $ then which of the following is/are true ? A. k =0.2 B. P (X=4)=0.6 C. P(X=2)=0.4 D. P(x ≥ 2)= 0.8 E. P(x= 5) = 0 Choose the correct answer from the options given below : |
A, B and C only B, C and D only A, B and E only B, C and E only |
A, B and E only |
The correct answer is Option (3) → A, B and E only (A) $P(X=4)=k(4^2-13)=0.2(16-13)=0.2(3)=0.6$ (B) $P(X=2)=\frac{k}{2}(2)=\frac{0.2}{2}×2=0.2$ (E) $P(X=5)=0$ ⇒ Not defined by probability function Sum of probabilities, $k+\frac{k}{2}(1)+\frac{k}{2}(2)+\frac{k}{2}(3-1)+k(4^2-13)=1$ $6.5k=1⇒k=\frac{1}{6.5}=0.2$ |