Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Three-dimensional Geometry

Question:

The area of a triangle whose vertices are $(x_1,y_1), (x_2,y_2)$ and $(x_3,y_3)$ is given by the absolute value of

Options:

$Δ=\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}$

$Δ=\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}$

$Δ=\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&0\\x_3&y_3&0\end{vmatrix}$

$Δ=\begin{vmatrix}x_1&y_1&1\\x_2&y_2&0\\x_3&y_3&0\end{vmatrix}$

Correct Answer:

$Δ=\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}$

Explanation:

The correct answer is Option (1) → $Δ=\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}$

The area of a triangle with vertices $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$ is given in matrix form as:

$\text{Area} = \left| \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end{vmatrix} \right|$