Match List I with List II
Choose the correct answer from the options given below : | ||||||||||||||||||||
A-II, B-IV, C-I, D-III A-II, B-I, C-IV, D-III A-II, B-III, C-IV, D-I A-I, B-IV, C-III, D-II |
A-II, B-IV, C-I, D-III |
The correct answer is Option (1) → A-II, B-IV, C-I, D-III (A) No. of possible matrix is, $2^6=64$ (B) $\begin{bmatrix}5 & 3\\1 & -3\end{bmatrix}$ ⇒ Sum of Diagonal elements = $5+(-3)=2$ (C) $\begin{bmatrix}a-b & 11\\-5 & a^2-b^2\end{bmatrix}=\begin{bmatrix}3&11\\-5&27\end{bmatrix}$ then $\frac{(ab)}{2}$ $⇒a-b=3$ ...(1) $⇒a^2-b^2=27$ ...(2) From (1) and (2), $a+b=9$ ...(3) Adding (1) and (3), $2a=12$ $a=6⇒b=3$ $∴\frac{(ab)}{2}=\frac{6×3}{2}=9$ (D) All the diagonal elements of skew symmetric matrices are zero. ∴ Sum = 0 |