If the lines $\frac{x-3}{k-5}=\frac{y-1}{1}=\frac{5-z}{-2k-1}$ and $\frac{x+2}{-1}=\frac{2-y}{-k}=\frac{z}{5}$ are perpendicular, then the value of k is |
1 -1 2 -2 |
-1 |
The correct answer is Option (2) → -1 first making std. form of lines $l_1:\frac{x-3}{k-5}=\frac{y-1}{1}=\frac{5-z}{-2k-1}$ $l_2:\frac{x+2}{-1}=\frac{2-y}{-k}=\frac{z}{5}$ $l_1⊥l_2$ so $((k-5)\hat i+\hat j+(2k+1)\hat k).(-\hat i+k\hat j+5\hat k)=0$ $5-k+k+10k+5=0$ $k=-1$ |